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Abstract
We present a phenomenological time-dependent Ginzburg–Landau theory of
nonlinear plastic deformations in solids. Because the problem is very complex,
we first give models in one and two dimensions without vacancies and
interstitials, where large strains produce densely distributed slips but the mass
density deviations remain small except near the tips of slips. Next we set
up a two-dimensional model including a vacancy field (or local free-volume
fraction), where the sensitive dependence of the elastic shear modulus on the
vacancy density is relevant. In our simulation, if strains are applied to nearly
defectless solids but in the presence of such an elastic inhomogeneity, the
vacancy density and the mass density can become considerably heterogeneous
for large strains on spatial scales much longer than the atomic size. These strain-
induced disordered states are metastable or long lived once they are created.

1. Introduction

Most previous papers on glass transitions so far have been concerned with near-equilibrium
properties such as relaxations of the density time correlation functions or dielectric response.
However, these quantities are too restricted or indirect, and there remains a rich group
of unexplored problems in far-from-equilibrium states. In particular, shear is a relevant
perturbation drastically changing the glassy dynamics when the shear rate γ̇ exceeds the
inverse of the structural relaxation time τα [1, 2]. In supercooled liquids, the microscopic
rearrangement processes occur on the timescale of τα in quiescent states, whereas they are
much accelerated even by extremely small γ̇ (if larger than τ−1

α ). Similar jamming rheology
has been studied in systems composed of large elements such as colloidal suspensions, dense
microemulsions and granular materials [3].

Experimentally, Simmons et al [4] observed shear-thinning behaviour, where the steady-
state viscosity η(γ̇ ) was represented by

η(γ̇ ) = σxy/γ̇
∼= η(0)/(1 + γ̇ τη), (1)

in the range 7 × 105 < η(0) < 6 × 1013 (Poise) in soda-lime-silica glass. The characteristic
time τη is expected to be of order τα . Remarkably, the shear stress σxy tends to a limiting shear
stress, σlim = η(0)/τη, of order 10−2µ0, µ0 being the shear modulus for infinitesimal strains.
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After application of shear, they also observed an overshoot of the shear stress before approach
to a steady state.

As a closely related problem, understanding of mechanical properties of amorphous metals
has been of great technological importance [5, 6]. They are usually ductile in spite of their high
strength. At low temperatures T � 0.6–0.7Tg, localized shear bands, where zonal slip occurs,
have been observed above a yield stress. At relatively high temperatures T � 0.6–0.7Tg,
on the other hand, shear deformations are induced homogeneously (on macroscopic scales)
throughout samples, giving rise to viscous flow with strong shear thinning behaviour. In a
model amorphous metal in 3D, Maeda and Takeuchi [7] numerically followed atomic motions
after application of a small shear strain to observe heterogeneities among poorly and closely
packed regions. Such dynamic heterogeneities have been reported in recent simulations in
sheared states [1] and also in quiescent states [8–11].

In the study of elasto-plastic dynamics of solids, microscopic simulations are
informative [12–14], while mean-field theories are instructive [15, 16]. In the latter theories,
the problem was reduced to that of one element obeying a stochastic process under the influence
of the average stress. The aim of this paper is then to present a space–time dependent, elasto-
plastic dynamical model on the basis of well defined nonlinear elastic theory. Although our
theory is still preliminary, we shall see that introduction of an order parameter, representing
the vacancy or the local free volume, can give rise to dramatic effects similar to those reported
in [12].

2. Plastic flow in one dimension

To introduce the fundamental concepts in our problem in the simplest manner, we first present
a one-dimensional model which mimics a solid with shear deformations varying only in one
direction (1D slip model). We here write down the dynamic equations in the continuum
representation (for simplicity). The velocity v(x, t) = ∂u(x, t)/∂ t of the shear displacement
u(x, t) (along the y axis) is governed by

ρ
∂

∂ t
v = ∇x [µ0γ0 sin(γ0

−1∇x u)] + η0∇2
x v + ∇xσR, (2)

where ∇x = ∂/∂x , ρ is the mass density, µ0 is the shear modulus, γ0 is a constant
determined by the underlying crystal structure and η0 is a vicosity. The period of the
strain is given by γp = 2πγ0. To ensure equilibrium in the absence of applied force, we
introduce the random stress σR(x, t) related to η0 via the fluctuation–dissipation relation
〈σR(x, t)σR(x ′, t ′)〉 = 2kBTη0δ(x − x ′)δ(t − t), where T is the temperature. Hereafter space
and time will be measured in units of 
 ≡ η0/(ρµ0)

1/2 and ω−1
0 ≡ η0/µ0, respectively. The

dimensionless noise strength is given by ε = kBT/µ0γ
2
0 
.

We numerically solve (2) on a 1D chain ( j = 0, 1, . . . , N = 600) with ε = 0.25,
setting u(x, t) → u j(t) and ∂u/∂x → γ j ≡ u j+1 − u j . We apply a constant shear rate
γ̇ at t = 0 with u0 = 0 and uN/γ0 = N γ̇ t . In figure 1 the average dimensionless stress
〈σ 〉(t) = N−1

∑
j sin(γ j (t)/γ0) + γ̇ is plotted as a function of the scaled strain γ̇ t/γp. The

system undergoes a pure elastic deformation γ j(t)/γ0
∼= γ̇ t in the initial stage, but slips (jumps

of γ j by multiples of γp) appear randomly throughout the system with increasing the average
strain γ̇ t . The inset shows slips and continuously strained regions. The average slope of the
latter regions gives the average stress. For the range of the shear rates in figure 1, we can see
shear-thinning σxy ∝ γ̇ 0.7 in steady states (if averaged over time).

It is also straightforward to integrate (2) under a fixed shear stress σext applied at one end
with the other end being pinned. For small σext below a yield stress σy, we observe no slip
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Figure 1. Stress versus strain in units of µ0γ0 and γp obtained from the discretized version of the
1D model (1) after application of constant shear rate. Here γ̇ /ω0 = 10−3, 10−4, 10−5 and 10−6

from above. The inset displays a snapshot of the deviations u j/γ0 − γ̇ t j (0 � j � 600) at t = 720
for γ̇ = 10−3.

formation, while for σext > σy plastic flow is produced. For the noise strength of ε = 0.25,
we find σy

∼= 0.2.

3. Plastic flow without vacancies

As a direct generalization of (2), we set up a plastic flow model in two dimensions (2D slip
model). In the continuum limit the strain components are defined by

e1 = ∇x ux + ∇yuy, e2 = ∇x ux − ∇yuy, e3 = ∇x uy + ∇yux, (3)

where ∇x = ∂/∂x and ∇y = ∂/∂y. If we suppose a triangular lattice, the elasticity is isotropic
in the harmonic approximation [2], being characterized by the bulk and shear moduli, K0

and µ0, but it depends on the orientational angle θ of one of the crystal axes for large shear
deformations. Note that, under rotation of the reference frame by θ , the shear strains e2 and
e3 are changed to e′

2 and e′
3, where [2]

e′
2 = e2 cos 2θ + e3 sin 2θ, e′

3 = −e2 sin 2θ + e3 cos 2θ. (4)

We write the elastic energy density in the form fel = K0e2
1/2 + µ0F(e′

3, e′
2). The simplest

form of the scaling function F is

F(e′
3, e′

2) = 1

6π2

[
3 − cos π

(√
3e′

3 − e′
2

) − cos π
(√

3e′
3 + e′

2

) − cos(2πe′
2)

]
(5)
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Figure 2. Function F(e3, e2) defined by (5), which represents the 2D shear deformation energy
density divided by µ0 for θ = 0.

and is shown in figure 2. F is invariant with respect to the rotation θ → θ + π/3, is a periodic
function of e′

3 with period γp = 2/
√

3 for e′
2 = 0 (simple shear deformation) and becomes

(e2
2 + e2

3)/2 for small strains. If we assume ∂θ/∂ t = (∇xvy − ∇yvx)/2 for the angle rotation
rate, its time integration yields

θ = 1
2 (∇x uy − ∇yux) + θ0, (6)

where θ0 is independent of t but may depend on r = (x, y). For θ = 0 one of the crystal axes
is along the x axis. Then the elastic energy Fel = ∫

dr fel is a functional of u. We assume
that the lattice velocity v = ∂u/∂ t obeys

ρ
∂

∂ t
v = − δ

δu
Fel + η0∇2v + ∇· ↔

σ R, (7)

where the first term on the right-hand side is also written as ∇· ↔
σ in term of the elastic stress

tensor
↔
σ . The symmetric random stress tensor

↔
σ R= {σ R

αβ } = {σ R
βα} satisfies σ R

xx + σ R
yy = 0,

because the bulk viscosity is neglected in (7), and [2]

〈σ R
αβ (r, t)σ R

αβ(r′, t ′)〉 = 2kBTη0δ(r − r′)δ(t − t ′). (8)

We measure space and time in units of η0/(ρµ0)
1/2 and η0/µ0 and the strains in units of

γp = 2/
√

3. If these scaling units are used, the noise strength kBTη0 in (8) is replaced by

ε = kBTρ/γ 2
p η2

0 . (9)

We integrate (7) on a 128 × 128 square lattice by applying a constant shear rate γ̇ at t = 0
with ε = 0.1. The periodic boundary condition is imposed in the x direction, while u = 0 at
the bottom y = 0 and ux = γ̇ t and uy = 0 at the top y = 128. At t = 0, the values of v at
the lattice sites are Gaussian random numbers with variance ε1/2 but u = 0 and θ = 0.1. In
figure 3 we show the average scaled stress 〈σxy 〉/µ0 as a function of the scaled strain γ̇ t/γp
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Figure 3. Stress versus strain for γ̇ = 10−3 and 10−4 obtained from the 2D slip model (7). In the
inset δe3 = e3 − γ and e2 at t = 400 for γ̇ = 10−3 are shown.

for γ̇ = 10−3 and 10−4. In the inset we display snapshots of e3 and e2. Because we start
with a perfect crystal with the initial fluctuations only in the velocity, the stress curve drops
sharply after the peak with catastrophic formation of slips. Then structurally disordered states
are produced where defects are proliferated (strain-induced disordering). Note that slips are
accumulations of dislocations [17]. In the initial stage of plastic flow, we have simple slips
consisting of two edge dislocations with opposite Burgers vector ±a with a being the lattice
constant. The elastic energy to create such a slip is minimum in the x and y directions under
shear deformation. This is the reason why the slips in figure 3 are parallel to the x or y direction.
In figure 4 the shear (=10−3) is switched off at (a) t = 190 before the peak time of the stress,
(b) t = 220 just after the peak time and (c) t = 440. The top and bottom boundaries are kept
at rest afterwards. Pure elastic deformation is maintained in (a), while no appreciable time
evolution is detected after transients in (b) and (c). This means that the structurally disordered
states are metastable.

4. Plastic flow with vacancies

Usually in the literature, the density deviation δρ is equated with −ρ̄∇ ·u = −ρ̄e1 in solids [17],
where ρ̄ (∼=ρ) is the average density and |δρ| � ρ̄ is assumed. In the presence of vacancies or
interstitials, however, there can be a small difference between these two quantities. Flemming
and Cohen [18] constructed a hydrodynamic description of solids including the new variable
m ≡ δρ/ρ̄ + e1. According to their theory, the vacancy concentration c may be defined by

c = c0 − m = c0 − (δρ/ρ̄ + e1) (10)
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Figure 4. Scaled stress and elastic energy versus time, which demonstrates freezing of strain-
induced disordered states of (7) at long times. The shear is switched off at (a) t = 190, (b) t = 220
and (c) t = 440, as indicated by arrows, using the same parameters as for the curve of γ̇ = 10−3

in figure 3.

where c0 is the average 〈c〉 dependent on T and ρ̄. On the other hand, Granato [19] claimed
relevance of interstitials in amorphous solids because they can greatly decrease the shear
modulus. However, because vacancies and interstitials are point defects, it may be more
appropriate to treat c as the local free-volume fraction [18, 20] which can take continuous
values at each lattice site. Then c0 is the average free-volume fraction and we may assume
0 � c0 � 1. The role of m or c is expected to be crucial in amorphous solids. We try to
include the vacancy variable in our nonlinear slip model (2D vacancy model).

The dynamic equations obeyed by the mass density and the momentum density are of the
usual forms,

∂

∂ t
δρ = −ρ̄∇ · v, (11)

ρ̄
∂

∂ t
v = ∇· ↔

σ +η0∇2v + ∇· ↔
σ R . (12)

In (12) the force density, the first term on the right-hand side, is written in terms of the free
energy functional F = F{ρ,u} as

∇· ↔
σ= −ρ̄∇(δF/δρ)u − (δF/δu)ρ = −(δF/δu)m, (13)

where use has been made of the identities (δ/δu)ρ = (δ/δu)m − ∇(δ/δm)u and (δ/δm)u =
ρ̄(δ/δρ)u. The random stress tensor

↔
σ R satisfies (8). It is important that, in the presence of the

vacancy field, the lattice velocity ∂u/∂ t is different from the mass velocity v and is assumed
to be of the form

∂

∂ t
u = v − λ0

(
δ

δu
F

)
ρ

+ ζR, (14)

where λ0 is the kinetic coefficient and the components ζ R
α of the random force vector ζR are

characterized by

〈ζ R
α (r, t)ζ R

β (r′, t ′)〉 = 2kBTλ0δαβδ(r − r′)δ(t − t ′). (15)
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From (11) and (14) the equation for m is expressed as

∂

∂ t
m = ∇ · λ0

[
∇

(
δ

δm
F

)
u

+ ∇· ↔
σ

]
+ ∇ · ζR. (16)

It is worth noting that (16) is similar to the dynamic equation for the concentration in viscoelastic
fluid mixtures [2, 21]. In passing, owing to the special form of (13), the time derivative of
the total free energy F{ρ,u} +

∫
dr ρ̄v2/2 becomes non-negative-definite in the absence of

applied stress if the random noises are neglected. This is a self-consistent condition of Langevin
equations ensuring attainment of equilibrium [2].

The free energy F = ∫
dr f is a functional of u and δρ (or m). We assume the free energy

density f in the form

f = A

2
m2 +

B

4
m4 + αme1 +

C

2
|∇δρ|2 +

K0

2
e2

1 + µ(m)F(e′
3, e′

2), (17)

where A, B and C are positive constants and α is a coupling constant. The gradient term
(∝C) is introduced to suppress the density fluctuations with short length scales. (We are
considering density fluctuations longer than the peak distance of the pair correlation function.)
For simplicity, we neglect the other gradient terms involving the gradients of m and the strains.
In our theory it is most important that the shear modulus µ(m) sensitively depends on m. Near
glass transitions, with decreasing m or increasing c, µ(m) is expected to decrease abruptly
from a finite value µ0 to zero (=fluid value) around a threshold value of m or c.

Analytic calculations of the above model are difficult except for idealized situations. As a
simple exercise, let us consider small deviations with wavevector k around a homogeneously
strained state with e3 = γ , where the system is at rest and the harmonic approximation can
be made for the elastic energy. Then the mechanical equilibrium condition allows elimination
of u from (16) [2]. We consider the steady-state variance of m in the long wavelength limit,
χv = limk→0〈|mk|2〉, in 2D. In the linear approximation it becomes dependent on the angle
of k:

kBT

χv
= A − α2

L0
− 2α

L0
µ1γ sin 2ϕ − 1

L0
(µ1γ )2[1 + (cos 2ϕ)2 K0/µ0], (18)

where sin 2ϕ = 2kxky/k2, µ(m) = µ0 + µ1m + · · · and L0 = K0 + µ0. The vacancy
diffusion constant is written as Dv = λ0kBT/χv. The steady-state density variance χρ =
limk→0〈|ρk|2〉/ρ2 in 2D is written as

χρ = kBT

L0
+

[
1 +

1

L0
(α + µ1γ sin 2ϕ)

]2

χv. (19)

The first term is the usual term, while the second term arises from the vacancy fluctuations. The
dependence of these quantities on γ and the angle ϕ can become appreciable with increasing
µ1 and/or decreasing A. For α = 0, for example, the homogeneous state is unstable for
γ > γc = (µ0 A)1/2/µ1 against the fluctuations with k along the x or y axis. Note that γc � 1
can hold if µ1/µ0 � 1. It is easy to confirm that essentially the same result follows in 3D
in both shear and elongational deformations. Thus, in elastically deformed amorphous solids
(before onset of plastic flow), we predict enhancement of the density fluctuations in particular
directions of the wavevector.

We then show the numerical results of our model in (11)–(17) obtained on a 128 × 128
square lattice for the case of applying a constant γ̇ . Again the units of space, time and strains
are η0/(ρµ0)

1/2, η0/µ0 and γp = 2/
√

3, respectively. The m is also divided by γp. The
dimensionless mass density is given by δρ/ργp. Though it is not clear what functional form
of µ(m) is appropriate, we tentatively use

µ(m) = µ0 exp[−A0/(m + m0)] (20)
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Figure 5. Stress versus strain for γ̇ = 10−3 obtained from integration of (11), (12) and (14)
using (16) and (17) at γ̇ = 10−3. Here m0 = 1, 0.6 and 0.2 from above.

for m+m0 > 0 and µ(m) = 0 for m+m0 � 0. Here A0 is a constant and is set equal to 0.1 in our
simulation, while m0 is a control parameter representing the closeness to the glass transition.
In fact, if µ(m) goes to zero at c = cc, we have m0 = cc − c0 from (10). However, essentially
the same numerical results follow as long as µ(m) strongly depends on m (for example, from
the simpler form G(m) ∝ (m + m0)

2 instead of (20)). The other parameter values used are
A = C = 1, B = 10, α = 0, λ0 = 0.1 and ε = 0.1. While the initial conditions for v, u and
θ are the same as in the previous case of figures 3 and 4, we assign random Gaussian numbers
with variance 0.1 to m. In figure 5 we show the time evolution of the scaled shear stress as a
function of the scaled average strain γ̇ t/γp at γ̇ = 10−3 for m0 = 1, 0.6 and 0.2. Figures 6(a)
and (b) display snapshots of e3, e2, c − c0 = −m and δρ at t = 250 and 420 on the curve of
m0 = 0.6 in figure 5. Figure 7 demonstrates that these strain-induced disordered states are
metastable as in figure 4. Salient features are as follows.

(i) Plastic flow is induced earlier than in the absence of vacancies, because slip formation is
easier in regions with smaller m. Onset of plastic flow is sensitive to the initial randomness
of m.

(ii) The effective viscosity ηeff = 〈σxy 〉/γ̇ becomes smaller with decreasing the parameter m0

in (17) or increasing the elastic inhomogeneity.
(iii) The ηeff also decreases as a function of time on long timescales because of slow

accumulation of vacancies around slips. In our model, though this tendency is considerably
suppressed by the quartic term (∝B) in (16), vacancy accumulation can lead to fluidization
at long times after percolation of the slips.

(iv) The density fluctuations are induced and are frozen after cessation of shear.
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Figure 6. Snapshots of δe3 = e3 − γ , e2, c − c0 = −m and δρ at (a) t = 250 and (b) t = 420 for
γ̇ = 10−3 on the curve of m0 = 0.6 in figure 5.

As demonstrated in figure 7, the fluctuation variances of the vacancy and the density are much
more enhanced than in the initial state. Owing to the gradient term in (16), the density smoothly
varies in space (compared with m).

5. Concluding remarks

We have presented a first time-dependent Ginzburg–Landau theory accounting for
inhomogeneous nonlinear elastic deformations. It is a coarse-grained theory and the sharp
peak of the structure factor, which is essential in the mode coupling theory [22], does not
come into play. Instead, periodicity of the elastic energy with respect to the strains e′

3 and e′
2

and vacancy dependence of the shear modulus are two major ingredients of our theory, which
bring about metastable structural disordered states with heterogeneities in the vacancy and
mass densities. As a closely related effect, Fischer [23] observed excess scattering from nearly
static density fluctuations with sizes in a range of 20–200 nm in glass-forming fluids. We
believe that such large-scale frozen fluctuations can arise only as a result of nonlinear elastic
deformations induced by structural disorder. We also mention previous simulations. Argon
et al [12] applied a tensile (elongational) strain to a 2D model to produce slips and shear bands
making angles of ±45◦ with respect to the stretched direction in agreement with experiments.
The same results also follow from our model and will be reported shortly. We will show that
the elastic energy to create a slip under tension is minimum for these directions. Ikeda et al
[14] applied a tensile strain to a 3D model to induce a change from a perfect crystal to an
amorphous solid.

However, we admit that our results are still preliminary and it remains unclear how our
theory corresponds to real physical effects. In particular, the initial conditions (u = 0 and
θ = constant) should be inappropriate for amorphous solids (where structural disorder should
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Figure 7. Freezing of strain-induced disordered states of the vacancy model. Shown are the
density variance [〈(δρ)2〉]1/2/ργp, the vacancy variance [〈(δm)2〉]1/2/γp and the average elastic
energy 〈 fel〉. As in figure 4, the shear rate is switched off at t = 220. The frozen density profile at
t = 2 × 104 is shown in the inset.

preexist even before applying strain). In future work, we should start with initial states with
various amounts of disorder and should also examine what parameter values are appropriate
for amorphous solids.

We mention analogous and instructive examples. In solids undergoing phase separation or
structural transitions, the dependence of the shear modulus on the order parameter,written as m,
in the form µ = µ0 +µ1m, is of crucial importance in phase ordering [2, 24]. In all these cases,
local minimization of the nonlinear elastic energy ((δF/δu)m = 0) gives rise to heterogeneous
metastable states where time evolution is pinned. In viscoelastic polymer systems, the
composition dependence of the viscoelastic properties can give rise to shear-induced phase
separation [2, 21], where the scattered light intensity takes a form similar to χv in (18).
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